• مشکی
  • سفید
  • سبز
  • آبی
  • قرمز
  • نارنجی
  • بنفش
  • طلایی
انجمن ها > انجمن دانش آموزی > صفحه اول بحث
لطفا در سایت شناسائی شوید!
دانش آموزی (بازدید: 6658)
شنبه 22/3/1389 - 14:23 -0 تشکر 205115
آموزش شیمی 3به همراه نكات تستی برای داوطلبان كنكور*

بسم الله الرحمن الرحیم

سلامی گرن خدمت دانش آموزان گرامی انجمن(خصوصا داوطلبان كنكور89)

در این بحث قصد داریم نكات تستی شیمی سال سوم دبیرستان را در این جا قرار دهیم.

علاوه بر این به صورت تشریحی،نكات هر فصل نیز قرار داده میشود.

امیدوارم كه این بحث برایتان مفید باشد.

موفق و موید باشید.

یا حق.

شنبه 22/3/1389 - 14:28 - 0 تشکر 205117

بسم الله الرحمن الرحیم

سلام علیكم

قسمت اول سوالات تستی

فرآیند انحلال:

میزان انحلال پذیری یک ماده حل شونده در یک حلال به طور قابل توجهی به ماهیت و قدرت نیروهای جاذبه بین ذرات حل شونده - حل شونده ، حلال - حلال و حل شده - حلال بستگی دارد. بیشترین انحلال وقتی مشاهده می‌شود که این نیروها همانند باشند، یعنی نخستین قاعده انحلال پذیری این است که "نظیر در نظیر حل می شود." بطور کلی ، مواد قطبی فقط در حلالهای قطبی و مواد ناقطبی فقط در حلالهای ناقطبی حل می‌شوند. یعنی مواد ناقطبی و مواد قطبی معمولا امتزاج ناپذیرند. مثلا تتراکلریدکربن (یک ماده ناقطبی) در آب نامحلول است. زیرا نیروی جاذبه به یک مولکول آب نسبت به یک مولکول دیگر قویتیر از نیروی جاذبه بین یک مولکول تتراکلریدکربن و یک مولکول آب است از این رو، مولکولهای تتراکلریدکربن رانده می‌شوند و این دو ماده ، یک سیستم مایع دو لایه‌ای تشکیل می‌دهد. بلورهای مشبک (مثلا الماس) که در آنها اتمهای تشکیل دهنده بلور با پیوند کووالانسی به یکدیگر پیوسته‌اند، در تمام مایعات نامحلول‌اند. این ساختار بلورین بسیار پایدارتر از آن است که با فرآیند انحلال از هم بگسلد یعنی هیچ جاذبه بالقوه بین حلال - حل شونده نمی‌تواند به قدرت پیوند کووالانسی موجود در این نوع بلور برسد. فرایند انحلال میان مولکولهای کووالانسی ناقطبی ، تنها نیروهای بین مولکولی موجود ، نیروی لاندن است. ولی نیروهای جاذبه بین مولکولهای کووالانسی قطبی علاوه بر نیروهای لاندن ، نیروهای دو قطبی - دو قطبی را نیز شامل می‌شود. در مواردی که پیوند هیدروژنی وجود دارد، نیروهای بین مولکولی بطور غیر عادی قوی است. از آنجایی که مواد ناقطبی فقط در حلالهای ناقطبی حل می‌شوند، ید که یک ماده ناقطبی است، در تتراکلریدکربن حل می‌شود. نیروی جاذبه بین مولکولهای I2 در ید جامد ، تقریبا از همان نوع و اندازه‌ای است که بین مولکولهای CCl4 در تتراکلریدکربن خالص وجود دارد و از این رو، جاذبه ای قابل توجه بین ید و تتراکلرید کربن ممکن می‌گردد و مولکولهای ید می‌توانند با مولکولهای تتراکلریدکربن ممزوج شوند و محلول حاصل یک مخلوط مولکولی بی نظم است. متیل الکل (CH3OH) و آب (هر دو ماده قطبی) به هر نسبت در یکدیگر حل می‌شوند. در محلول متیل الکل و آب ، مولکولهای CH3OH و H2O با پیوند هیدروژنی به هم پیوسته‌اند که در حالت مایع خالص نیز مولکولهای هر دو مایع بوسیله پیوند هیدروژنی به یکدیگر جذب می‌شوند. مایعات قطبی (بویژه آب) می‌توانند حلال بسیاری از ترکیبات یونی باشند. یونهای مواد حل شده توسط مولکولهای قطبی با نیروی الکتروستاتیکی جذب می‌شوند، یعنی یونهای منفی توسط قطبهای مثبت مولکولهای حلال و یونهای مثبت توسط قطبهای منفی این مولکولها جذب می‌شوند. این جاذبه یون - دو قطبی ممکن است نیروهای نسبتا قوی باشند و موجب می‌شود که یونها از بلور جدا شده و در فاز مایع شناور شوند. یونهای حل شده آبپوشیده‌اند و در حالی که با غلافی از مولکولهای آب احاطه شده‌اند در محلول حرکت می‌کند.

شنبه 22/3/1389 - 14:32 - 0 تشکر 205120

بسم الله الرحمن الرحیم

سلام علیكم

قسمت دوم سوالات تستی

اثر دما بر انحلال پذیری:

اثر تغییر دما بر انحلال پذیری یک ماده به جذب شدن یا آزاد شدن گرما به هنگام تهیه محلول سیر شده آن ماده بستگی دارد. با استفاده از اصل لوشاتلیه می توان اثر تغییر دما بر روی انحلال پذیری یک ماده را پیش بینی کرد. اگر فرآیند انحلال ماده حل شونده ، فرآیندی گرماگیر باشد، انحلال پذیری آن ماده با افزایش دما افزایش می‌یابد. حل شده موجود در محلول سیر شده <----> حل شونده جامد + انرژی اگر انحلال ماده حل شونده فرآیندی گرماده باشد، با افزایش دما ، انحلال پذیری ماده حل شونده کاهش می‌یابد. معدودی از ترکیبات یونی ( مثل Na2CO3 , Li2CO3 ) بدین گونه عمل می‌کنند. علاوه بر این ، انحلال پذیری تمام گازها با افزایش دما ، کاهش پیدا می‌کند. مثلا با گرم کردن نوشابه‌های گازدار ، گاز دی‌اکسید کربن موجود در آنها از محلول خارج می‌شود. تغییر انحلال پذیری با تغییر دما به مقدار آنتالپی انحلال بستگی دارد. انحلال پذیری موادی که آنتالپی انحلال آنها کم است، با تغییر دما تغییر چندانی نمی‌کند.

شنبه 22/3/1389 - 14:35 - 0 تشکر 205122

بسم الله الرحمن الرحیم

سلام علیكم

قسمت سوم سوالات تستی

اثر فشار بر انحلال پذیری:

 اثر تغییر فشار بر انحلال پذیری مواد جامد و مایع معمولا کم است ولی انحلال پذیری گازها در یک محلول با افزایش یا کاهش فشاری که به محلول وارد می‌شود، به میزان قابل توجهی تغییر می‌کند. "ویلیام هنری" در سال 1803 میلادی کشف کرد که مقدار گازی که در یک دمای ثابت در مقدار معینی از یک مایع حل می‌شود با فشار جزئی آن گاز در بالای محلول نسبت مستقیم دارد. فقط محلولهای رقیق در فشارهای نسبتا پایین از قانون هنری به خوبی پیروی می‌کنند. گازهایی که انحلال پذیری آنها بسیار زیاد است، عموما با حلال خود ترکیب می‌شود (مثلا گاز هیدروژن کلرید وقتی که حل می‌شود، با آن ترکیب شده و هیدروکلریک اسید تولید می‌کند). این محلولها از قانون هنری پیروی نمی‌کنند. خون غواصها در عمق دریا تحت فشار نسبتا زیاد ویژه عمقی که در آن کار می‌کنند با هوا سیر می‌شود. اگر این فشار ، در اثر بالا آمدن سریع سطح آب به سرعت برداشته شود، هوا به سرعت از محلول خارج شده و حبابهایی را در سیستم جریان خون غواص ایجاد می‌کند. این حالت که "آمبولی هوایی" نام دارد، بر تحریکات عصبی و سیستم جریان خون اثر گذاشته و ممکن است مرگ آور باشد. برای پیشگیری از این حادثه از جو هلیوم و اکسیژن به جای هوا که بخش عمده آن اکسیژن و نیتروژن است استفاده می‌شود، زیرا انحلال پذیری هلیوم در خون و مایعات بدن بسیار کمتر از نیتروژن است. تعادلهای انحلال تعادل مایع - مایع (حل شدن برم در آب) هر گاه 50 گرم برم را که مایعی است قرمز رنگ ، فرار و سمی در ظرف محتوی یک لیتر آب بریزیم، دو لایه قرمز و بی رنگ پدید می‌آید. با گذشت زمان برم در آب حل می‌شود و محلول کم کم پر رنگ می‌شود و بالاخره تغییر متوقف می‌شود. گر چه مایع برم هنوز در ته ظرف وجود دارد (در حدود 14 گرم). در این شرایط که محلول برم در مجاورت برم خالص قرار دارد و هیچگونه تغییری مشهود نیست، می‌گوییم سیستم در حال تعادل است. ویژگی مهم تعادل ، تغییر ناپذیری خواص ماکروسکوپی آن است. خواص ماکروسکوپی ، خواصی است که به مقدار زیادی از ماده وابسته است به اندازه‌ای که قابل مشاهده و اندازه گیری باشد و تغییرات آنها آشکار شود. تعادل جامد - مایع (حل شدن نمک طعام در آب)هر گاه مقداری زیادی بلورهای نمک طعام (در حدود 500 گرم) را به یک لیتر آب بیفزاییم و مخلوط را بهم بزنیم چون هم زدن را تا 10 دقیقه ادامه دهیم، خواهیم دید که مقدار زیاد نمک حل می‌شود و فقط 140 گرم آن باقی می‌ماند که با بهم زدن زیاد هم از وزن نمک موجود در ته ظرف کاسته نمی‌شود. بنابراین می‌گوییم که به حالت ثابتی رسیده و سیستم در حال تعادل است، زیرا خواص ماکروسکوپی آن تغییر نمی کند. در حقیقت پدیده تعادل در سیستم جامد - مایع آب نمک شامل دو فرآیند است که در حال رقابت با یکدیگرند. در ابتدا که نمک را در آب ریختیم، فرآیند حل شدن که شامل یونیزه شدن NaCl به کاتیونهای سدیم و آنیونهای کلر است، اغلب در یک جهت معینی از بلور به سوی محلول انجام می‌گیرد. با پیشرفت فرآیند حل شدن و افزایش غلظت یونها در محلول ، واکنش معکوس نیز امکان پذیر می‌شود. یعنی افزوده شدن یونهای محلول به بلور (تبلور یا رسوب کردن) انجام می‌شود. مادام که موازنه این دو فرایند برقرار است، مقدار نمک حل شده در واحد حجم محلول ثابت خواهد بود و سیستم در تعادل انحلال پذیری باقی خواهد ماند. تعادل گاز- مایع (حل شدن گاز CO2 در آب) انحلال گازها در مایعات با دما نسبت عکس و با فشار نسبت مستقیم دارد. مکانیسم حل شدن گاز در مایع ، کم و بیش مشابه حل شدن جامد در مایع و مایع در مایع است. هر گاه بوسیله یک لوله گاز دی‌اکسید کربن را در آب موجود در یک ظرف بدمیم، حبابهای درشت گاز که وارد آب می‌شوند، بتدریج کوچک شده و حتی ممکن است ناپدید شوند و این نشانه حل شدن جزئی آنهاست. با ادامه دمیدن ، به مرحله‌ای می‌رسیم که آب بوسیله گاز سیر می‌شود و دیگر حبابهای گاز بدون کاهش حجم خارج می‌شوند. در این شرایط در دما و فشار هوای اطاق ، غلظت گاز در آب ثابت می‌ماند و به عبارتی تعادل زیر برقرار می‌شود: (محلول) CO2 <----> (گاز) CO2

شنبه 22/3/1389 - 14:40 - 0 تشکر 205124

بسم الله الرحمن الرحیم

سلام علیكم

قسمت چهارم سوالات تستی

شیمی محلولها:

محلولها ، مخلوطهایی همگن هستند. محلولها را معمولا بر حسب حالت فیزیکی آنها طبقه بندی می‌کنند: محلولهای گازی ، محلولهای مایع و محلولهای جامد. بعضی از آلیاژها محلولهای جامدند؛ سکه‌های نقره‌ای محلولهایی از مس و نقره‌اند و برنج محلولی جامد از روی در مس است. هر آلیاژی محلول جامد نیست، بعضی از آلیاژها مخلوطهایی ناهمگن اند. محلولهای مایع متداولترین محلولها هستند و بیشترین کاربرد را در بررسیهای شیمیایی دارند. هوا هم مثالی برای محلولهای گازی می‌باشد. ماهیت محلولها در یک محلول ، معمولا جزئی که از لحاظ کمیت بیشترین مقدار را دارد، حلال و سایر اجزا را مواد حل شده (حل شونده) می‌گوییم. اما گاهی آسانتر آن است که جزئی از محلول را با آنکه مقدارش کم است، حلال بنامیم و گاهی اصولا اطلاق نام حلال و حل شونده به اجزای یک محلول (مثلا محلولهای گازی) چندان اهمیتی ندارد. بعضی از مواد به هر نسبت در یکدیگر حل می‌شوند. امتزاج پذیری کامل از ویژگیهای اجزای تمام محلولهای گازی و بعضی از اجزای محلولهای مایع و جامد است. ولی غالبا، مقدار ماده ای که در حلال معینی حل می شود، محدود است. انحلال پذیری یک ماده در یک حلال مخصوص و در دمای معین، بیشترین مقداری از آن ماده است که در مقدار معینی از آن حلال حل می شود و یک سیستم پایدار به وجود می آورد. غلظت محلول برای یک محلول معین ، مقدار ماده حل شده در واحد حجم حلال یا در واحد حجم محلول را غلظت ماده حل شده می‌گوییم. مهمترین نوع غلظتها که در آزمایشگاه بکار می‌رود مولاریته و نرمالیته است. مولاریته عبارت است از تعداد مولهای یک ماده که در یک لیتر محلول وجود دارد. به همین دلیل آن را مول بر لیتر یا M/L می‌گیرند. نرمالیته یک محلول عبارتست از تعداد هم ارز گرمهای (اکی والان گرم های) ماده موجود در یک لیتر محلول. نرمالیته را با N نشان می‌دهند. انواع محلولها محلولهای رقیق محلولهایی که غلظت ماده حل شده آنها نسبتا کم است. محلولهای غلیظ محلولهایی که غلظت نسبتا زیاد دارند. محلول سیر شده اگر مقدار ماده حل شده در یک محلول برابر با انحلال پذیری آن در حلال باشد، آن محلول را محلول سیر شده می‌نامیم. اگر به مقداری از یک حلال مایع ، مقدار زیادی ماده حل شونده (بیشتر از مقدار انحلال پذیری آن) بیفزاییم، بین ماده حل شده و حل شونده باقیمانده تعادل برقرار می‌شود. ماده حل شونده باقیمانده ممکن است جامد ، مایع یا گاز باشد. در تعادل چنین سیستمی ، سرعت انحلال ماده حل شونده برابر با سرعت خارج شدن ماده حل شده از محلول است. بنابراین در حالت تعادل ، غلظت ماده حل شده مقداری ثابت است. محلول سیر نشده غلظت ماده حل شده در یک محلول سیر نشده کمتر از غلظت آن در یک محلول سیر شده است. محلول فراسیرشده می‌توان از یک ماده حل شونده جامد ، محلول فراسیر شده تهیه کرد که در آن، غلظت ماده حل شده بیشتر از غلظت آن در محلول سیر شده است. این محلول ، حالتی نیم پایدار دارد و اگر مقدار بسیار کمی از ماده حل شونده خالص بدان افزوده شود، مقداری از ماده حل شده که بیش از مقدار لازم برای سیرشدن محلول در آن وجود دارد، رسوب می‌کند. خواص فیزیکی محلولها بعضی از خواص محلولها به دو عامل ، نوع ماده حل شده و غلظت آن در محلول بستگی دارند. این مطلب برای بسیاری خواص فیزیکی محلولها از جمله ، محلولهای آبی درست به نظر می‌رسد. برای مثال، محلول نمک طعام در آب بی رنگ پرمنگنات پتاسیم در آب، بنفش صورتی است (در اینجا نوع ماده حل شده مطرح است). افزون بر این ، می‌دانیم که هر چه بر محلول پرمنگنات آب بریزیم و آن را رقیقتر کنیم، از شدت رنگ آن کاسته می‌شود (اینجا غلظت محلول مطرح است). یکی دیگر از خواص فیزیکی که به این دو عامل بستگی دارد، قابلیت هدایت الکتریکی محلول آبی مواد گوناگون است. چهار خاصه فیزیکی دیگر از محلولها وجود دارد که به نوع و ماهیت ذرات حل شده بستگی ندارد، بلکه فقط به مجموع این ذرات وابسته است. به عبارت دیگر ، تنها عامل موثر بر خواص محلول در اینجا ، غلظت است. چنین خواصی از محلول را معمولا "خواص جمعی محلولها" (خواص کولیگاتیو Colligative properties) می‌نامند و عبارتند از کاهش فشار بخار ، صعود نقطه جوش ، نزول نقطه انجماد و فشار اسمزی. کاهش فشار بخار وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، فشار بخار آن کاهش می‌یابد و مقدار کاهش به مقدار حل شونده بستگی دارد. هر چه میزان حل شونده بیشتر باشد، میزان کاهش در فشار بخار بیشتر است. برای مثال اگر دو ظرف را در نظر بگیریم که در آنها مقدار مساوی مایع وجود دارد که یکی محتوی مولکولهای آب خالص و دیگری محتوی محلول قند در آب است، بدیهی است که تعداد مولکولهای آب در واحد حجم از آب قند ، کمتر از آب خالص است. به همین نسبت ، تعداد مولکولهای آب در سطح آب قند ، نیز کمتر می‌باشد. بنابراین، نسبت مولکولهای پرانرژی آب که قادر به تبخیر از سطح آب قند هستند، کمتر می‌باشد و در نتیجه فشار بخار محلول کمتر می‌شود. افزایش نقطه جوش در اثر حل شدن مقداری حل شونده غیر فرار در یک حلال ، نقطه جوش آن افزایش می‌یابد. مقدار افزایش فقط به مقدار حل شونده بستگی دارد. برای مثال ، آب در شرایط متعارفی (دمای 25 درجه سانتیگراد و فشار بخار یک اتمسفر یا 760 میلی متر جیوه) در 100 درجه سانتیگراد می جوشد. اما اگر در آب، مقداری قند مثلا به غلظت یک مولال (یک مول در 1000 گرم آب) بریزیم، فشار بخار محلول آب قند به اندازه 14 میلی متر جیوه کاهش می‌یابد و در نتیجه محلول در 52/100درجه سانتیگراد می‌جوشد. کاهش نقطه انجماد وقتی یک حل شونده غیر فرار در یک حلال حل می‌شود، نقطه انجماد آن کاهش می‌یابد. بنابراین دمای انجماد محلولهای آبی همیشه کمتر از دمای انجماد آب خالص است. استفاده از این خاصیت در رادیاتور اتومبیل می‌باشد که برای جلوگیری از یخ زدن آب رادیاتور اتومبیل در زمستان ، به آن مقداری مایع به نام ضد یخ می‌افزایند. همچنین با اضافه کردن نمک (مانند کلرید سدیم) همراه با شن ریز روی آسفالت خیابانهای شهر ، هیدراته شدن یونهای نمکها مستلزم مصرف مقداری آب است که از ذوب شدن برف فراهم می گردد. بنابراین آب نمک غلیظی فراهم می‌شود که حتی در 20 درجه زیر صفر منجمد نمی‌شود. فشار اسمزی اگر در ظرف U شکلی ، حلال A از مخلوط حلال و حل شونده (B + A) به وسیله یک غشای نیمه تراوا ، جدا شود، چون فقط حلال از غشا عبور می‌کند، بعد از رسیدن به حالت تعادل ، ارتفاع مایع در قسمت (حاوی B + A) که حل شونده وجود دارد بالا می رود.اگر به این ستون فشار وارد شود تا سطح مایع در دو طرف یکسان شود، این فشاراسمزی است که به علت حل شدن حل شونده غیر فرار در حلال ایجاد شده است. به عکس فرآیند اسمز ، اسمز معکوس گویند که برای شیرین کردن آب استفاده می شود. همچنین برای تعیین جرم مولکولی پلیمرها ، پروتئینها و بطور کلی مولکولهای سنگین از فشار اسمزی استفاده می‌شود

شنبه 22/3/1389 - 14:42 - 0 تشکر 205125

بسم الله الرحمن الرحیم

سلام علیكم

واکنش های گرماگیر و گرماده


دید کلی بسیاری از واکنشهای شیمیایی با آزاد کردن انرژی همراه هستند. این انرژی آزاد شده می‌تواند بصورت گرما ، نور یا صدا باشد. چنین واکنش‌هایی را واکنش گرماده می‌گویند. روزانه از واکنش‌های گرماده زیادی برای منظورهای مختلف استفاده می‌کنیم. ساده‌ترین این واکنش‌ها روشن کردن کبریت است که واکنشی بین اکسیژن هوا و ماده آتشگیر آن رخ می‌دهد که با آزاد کردن نور و گرما همراه است. سوخت‌های طبیعی ترکیبات پیچیده‌ای از کربن و هیدروژن هستند. وقتی که این مواد در اکسیژن می‌سوزند دی‌اکسید کربن ، آب و حرارت ایجاد می‌کنند. برخی از سوخت‌ها مانند هیدروژن و مواد منفجره مانند TNT و دینامیت‌ها در اثر واکنش ظرفیت‌های بالایی از انرژی را در مدت زمان کوتاهی آزاد می‌کنند، بنابراین انفجار را می‌توان واکنش گرماده در نظر گرفت که انرژی زیادی را بصورت گرما ، صدا و نور در زمان کمتری آزاد می‌کند. انجام واکنش گرماده از لحاظ تئوری طبق قانون بقای انرژی ، انرژی از بین نمی‌رود اما بصورت‌های دیگر تبدیل می‌شود، بنابراین انرژی یک سیستم مقدار ثابتی است. بعنوان مثال انرژی امروزی جهان با انرژی آن در هزاران سال پیش برابر است. واکنش‌های شیمیایی با تغییر انرژی همراه‌اند. در یک واکنش وقتی پیوندهای ناپایدار با پیوندهای پایدارتری جایگزین می‌شوند مقداری انرژی آزاد می‌شود، بنابراین تشکیل پیوندهای پایدار با آزاد کردن انرژی همراه است و وقتی میلیون‌ها پیوند پایدار در یک واکنش ایجاد می‌شود این انرژی‌ها با هم جمع شده و انرژی بالایی را بصورت حرارت ، نور یا انفجار آزاد می‌کنند. بنابراین در یک واکنش گرماده سطح انرژی کمتر از سطح انرژی مواد واکنش دهنده است و گرمای آزاد شده را با آنتالپی منفی نمایش می‌دهند. وقوع واکنش‌های گرماده از لحاظ ترمودینامیکی برخی از واکنش‌های شیمیایی گرماده بصورت خود بخودی انجام می‌گیرند. میزان خود بخودی بودن یک واکنش را ΔG که معیاری از آنتروپی و محتوای آنتالپی است، مشخص می‌کند. اما پیش‌گویی خود بخودی بودن یک واکنش دلیل بر وقوع آن واکنش نیست. زیرا ترمودینامیک ، چیزی در مورد سرعت یک واکنش پیش‌بینی نمی‌کند. بعنوان مثال واکنش کربن با اکسیژن در دمای 25ْ و فشار 1 atm از لحاظ ترمودینامیکی قابل انجام است. اما بدون یک عامل موثر مثل حرارت ممکن است مخلوط کربن و مدت‌های مدیدی بدون تغییر باقی بماند. تغییر آنتروپی یک محیط بر اثر گرمایی که بعلت تغییر آنتالپی واکنش به محیط یا از محیط منتقل می‌شود بوقوع می‌پیوندد. هر چه بزرگ‌تر باشد بی‌نظمی بیشتری در محیط ایجاد می‌شود. پس در یک واکنش گرماده خود بخودی: ΔG = ΔH -TΔs < 0 0> ΔH در یک واکنش گرمازا Δs > 0 میزان بی‌نظمی در یک واکنش خود بخودی پس T.Δs > 0 آنگاه TΔs < 0- است. چون Δs برای یک تغییر خود بخود بزرگتر از صفر است و TΔs کل هم باید بزرگتر از صفر باشد در اینصورت بوده برای یک تغییر خود بخود است. برای بسیاری از واکنش‌های شیمیایی در 25 درجه سانتیگراد و فشار 1atm مقدار مطلق ΔH بسیار بزرگتر از مقدار TΔs می‌باشد در این شرایط واکنش‌های گرمازا بصورت خود بخود صورت می‌گیرند. استفاده از واکنش‌های گرمازا در صنعت بیشتر کوره‌های احتراقی که عملیات گداختن و تصفیه کانی آهن و تولید آهن در آنها انجام می‌گیرد نیاز به دماهای بسیار بالا برای انجام واکنش دارند. در عملیات ذوب سنگ آهن ، سنگ آهن را با کک و سنگ آهک در کوره قرار داده و جریانی از هوای داغ را به درون کوره هدایت می‌کنند. واکنش کک ( کربن ) با اکسیژن بسیار گرمازا است. بنابراین این کوره‌ها را از اکسیژن غنی می‌کنند. کک در اثر گرما هوای داغ با اکسیژن وارد واکنش شده و ایجاد می‌کند که از گرمای فراوان حاصل از این واکنش برای ذوب سنگ آهن استفاده می‌شود.

شنبه 22/3/1389 - 14:48 - 0 تشکر 205126

بسم الله الرحمن الرحیم

سلام علیكم

خواص کولیگاتیو


(برخی از خواص محلولها به جای ماهیت محلول ، به غلظت ذرات ماده حل شده بستگی دارد. این خواص را خواص کولیگاتیو می‌نامند. برای محلولهایی که شامل ماده حل شده غیر فرار هستند، این خواص عبارتند از: کاهش فشار بخار ، نزول نقطه انجماد ، صعود نقطه جوش و فشار اسمزی. )

نگاه کلی

همه ما با خواص کولیگاتیو محلولها در زندگی روزمره سرو کار داریم، بدون این که اصطلاح علمی آن را بدانیم و یا علت وقوع چنین پدیده‌‌‌‌‌‌هایی را بتوانیم توضیح دهیم. به‌عنوان مثال ، در تهیه مربا و شربت به صورت علمی تجربه کرده‌ایم که محلول آب و شکر دیرتر از آب خالص می‌جوشد یا محلول آب و نمک و آب و شکر در دماهای پایینتر از دمایی که آب خالص یخ می‌بندد، منجمد می‌شوند. وقتی در رادیاتور ماشین برای جلوگیری از انجماد آب ، ضد یخ اضافه می‌کنیم، از پدیده نزول نقطه انجماد استفاده کرده‌ایم.


پدیده اسمز در بسیاری از فرآیندهای زیستی نقش اساسی دارد. مواد غذایی و زائد با عمل اسمز از میان دیواره سلولهای بافتهای حیوانی عبور داده می‌شوند. سلولهای خونی در محلولهای غلیظ ، آب از دست داده‌ ، چروکیده می‌شوند. به همین دلیل ، باید محلولهای غذایی تزریقی به داخل سیاهرگ ، باید دقیقا طوری تنظیم شود که فشار اسمزی خون (در حدود 7.7 اتمسفر) برابر باشد.

دیواره سلولهای گیاهی و جانوری به‌عنوان غشاهای نیمه‌تراوا عمل می‌کنند و در محلولهای قندی و نمکی ، آب از دست داده ، چروکیده می‌شوند. در زیر برخی از خواص کولیگاتیو را بررسی می‌کنیم.

کاهش فشار بخار

فشار بخار تعادل حلال بالای یک محلول کمتر از حلال خالص است. به تجربه دیده شده است که محلولهای آبی غلیظی مانند آب قند ، آهسته‌تر از آب خالص تبخیر می‌شوند و این نشان‌دهنده کاهش فشار بخار آب بر اثر وجود ماده حل شده است. اگر غلظت ماده حل شده به حد کافی زیاد باشد، بخار موجود در اتمسفر ، مایع شده ، بعد از ورود به محلول ، آن را رقیق خواهد کرد. بررسی میزان کاهش فشار بخار نشان می‌دهد که این کاهش ، یک خاصیت کولیگاتیو حقیقی است و مستقیما به غلظت ماده حل شده بستگی دارد و مستقل از ماهیت مولکولهای حل شده است.



رابطه بین فشار بخار حلال و غلظت را می‌توان به این صورت بیان کرد:



P˚1 - P1 = X2 P˚1



کمیت P˚1 - P1 ، اختلاف بین فشار بخار حلال در مایع خالص و در محلول است و همان ، کاهش فشار بخار خواهد بود. بنابراین:


VPL =X˚2P1 (کاهش فشار بخار)


در این معادلات P1 فشار بخار حلال روی محلول ، X1 کسر مولی حلال در محلول و P˚1 فشار بخار حلال خالص در همان دما ، X2 جزء مولی ماده حل شده.


جوش


صعود نقطه جوش

محلولی از ماده حل شده غیر فرار همواره در دمای بالاتر از نقطه جوش حلال می‌جوشد. در محلولهایی که رقیق هستند، صعود نقطه جوش مستقیما به غلظت ماده حل شده بستگی دارد. صعود نقطه جوش محلولهایی را که مواد حل شده آنها غیر فرار هستند، می‌توان بر حسب کاهش فشار بخار توجیه کرد. چون محلول مذبور در هر دمایی فشار بخاری کمتر از فشار بخار حلال خالص دارد، محلول مذبور باید برای جوش آمدن به دمای بالاتری برسد، یعنی رسیدن به این دما قبل از این که فشار بخار محلول برابر با فشار بیرون باشد، صورت گیرد. صعود نقطه جوش در یک محلول را از رابطه زیر بدست می‌آورند:


Tb = Kb X m∆


در این معادله Tb∆ صعود نقطه جوش بر حسب درجه سیلسیوس ، m مولالیته و Kb ثابت مربوط به حلال مورد نظر است. Kb برای آب 0.52 درجه می‌باشد. یعنی نقطه جوش یک مولال آبی ماده حل شده غیر فرار (قند و اوره ...) 0.52 بیشتر از نقطه جوش آب است.

نزول نقطه انجماد

محلولهای شامل مقدار کمی از ماده حل شده در دماهای پایینتر از حلال خالص منجمد یا ذوب می‌شوند. شیمیدانها از این روش برای بررسی خلوص جامداتی که در آزمایشگاه تهیه کرده‌اند، استفاده می‌کنند. با مقایسه نقطه ذوب نمونه تهیه شده با نمونه خالص ، میزان ناخالصی موجود در نمونه را حدس می‌زنند.



نزول نقطه انجماد هم مانند صعود نقطه جوش ، نتیجه مستقیم کاهش فشار بخار حلال بر اثر حضور ماده حل شده است. نقطه انجماد یک محلول دمایی است که در این دما فشار بخار حلال موجود در محلول مانند فشار بخار حلال جامد خالص است. این موضوع نشان می‌دهد که هنگام انجماد محلول ، حلال خالص (مثل یخ) جدا خواهد شد و در عمل هم این اتفاق می‌افتد. نزول نقطه انجماد هم متناسب با غلظت ماده حل شده است و از این رابطه بدست می‌آید:

Tf = Kf X m∆



در این معادله Tf∆ صعود نقطه جوش بر حسب درجه سیلسیوس ، m غلظت مولال و Kf ثابت مربوط به حلال مورد نظر است.


جدول ثابتهای نقطه انجماد و نقطه جوش مولال چند حلال

حلال نقطه انجماد بر حسب سیلسیوس Kf نقطه جوش بر حسب سیلسیوس Kb

آب 0 1.86 100 0.52

اسید استیک 17 3.90 118 2.93

بنزین 5.50 5.10 80 2.53

سیکلوهگزان 6.5 20.2 81 2.79

کافور 178 40.0 208 5.95

اسمز

فشار اسمزی

اگر دو ظرف که یکی حاوی آب خالص و دیگری یک محلول آبی قند باشد، در یک محفظه قرار داده شوند، با گذشت زمان ، سطح مایع در بشر شامل محلول بالا می‌رود، در حالیکه سطح آب خالص پایین می‌آید. در نتیجه ، در اثر تبخیر و میعان ، همه آب به محلول منتقل می‌شود. این اثر ناشی از اختلاف فشار بخار آب در دو بشر است که آب خود به خود از ناحیه‌ای که فشار بخارش بالاست، به نقطه‌ای که فشار بخارش پایین است، منتقل می‌شود. هوای داخل محفظه نسبت به مولکولهای آب تراوا می‌باشد.

غشاهایی وجود دارد که نسبت به مولکولهای حلال (مثل آب) تراوا هستند. اما مانع عبور مولکولهای ماده حل شده می‌شوند. فرآیندی را که طی آن ، فقط حلال از غشای تراوا نفوذ می‌کند، اسمز معکوس می‌نامند. با اعمال فشار بر محلول ، می‌توان مانع عبور مولکولهای آب از درون غشا به محلول مزبور شد. مقدار فشار برونی که بتواند مانع عمل اسمزی شود، به نام فشار اسمزی محلول معروف است. فشار اسمزی یک محلول رقیق ، یکی از خواص کولیگاتیو می‌باشد، زیرا با غلظت ماده حل شده نسبت مستقیم دارد و مستقل از ماهیت ماده حل شده است. فشار اسمزی از رابطه زیر حساب می‌شود :

π = MRT


در این معادله ، π فشار اسمزی بر حسب اتمسفر ، M مولاریته ، R ثابت جهانی گازها (0.0821Lit.atm/mol˚K) و T دما بر حسب کلوین می‌باشد. چون M = n/V که در آن n تعداد مولها و V حجم هستند، بنابراین πV = nRT 

شنبه 22/3/1389 - 14:52 - 0 تشکر 205128

بسم الله الرحمن الرحیم

سلام علیكم

جایگزین سی اف سی

استفاده از یخ مایع بطور روز افزون مورد توجه قرار می گیرد. چرا که در مقایسه با یخ قالبی، یخ پولکی و یا آب سرد شده ی در یا سرمایش سریع تری ایجاد می کند


قرن ها است یخ به عنوان یک ماده ی موثر برای نگهداری مواد غذایی در دمای حدود صفر درجه ی سانتیگراد شناخته شده است. علت این امر انرژی زیادی است که باید صرف شود تا در یک فشار ثابت و در دمای انجماد، یک ماده ی خالص یک ساختار منظم کریستالی پیدا کند و به حالت جامد درآید. بر عکس در فرآیند ذوب، در همان دما که اکنون دمای ذوب خوانده می شود، انرژی زیادی آزاد می شود تا ساختار کریستالی تخریب گردد. برای دماهای غیر از صفر درجه ی سانتیگراد از مواد دیگری مانند مخلوط ها، که در صنعت کاربردهای فراوانی دارند، استفاده می شود. نقطه ی انجماد و بالطبع ذوب این مواد ناخالص، همچنین انتالپی آنها، در فرآیند تغییر حالت از جامد به مایع و بر عکس ثابت نیست و بطور مداوم تغییر می کند. اگر در جریان انجماد یک ماده ی مخلوط کریستال های ریز جامد درون سیال به خوبی و به صورت یکنواخت پخش شده باشد، این حالت آبکی مورد بحث (Slurry) از ماده به دست آمده است. این ذرات باید دارای پایداری کافی باشند و در اثر نیروی شناوری نباید فقط در سطح مایع قرار بگیرند. این حالت از مخلوط ها ممکن است به اشکال مختلف از جمله؛ امولسیون های با ذرات بسیار ریز، پارافین، رشته های در هم تنیده و ... باشند. یخ مایع (Slurry Ice) قدیمی ترین و معمول ترین از گروه این مواد می باشد که مورد استفاده قرار می گرفته است.

تعاریف:
در زمان های قدیم، رومی ها برای سرد کردن مواد غذایی از یخ هایی که به صورت طبیعی شکل گرفته بود، استفاده کردند. در قرن اخیر، یخ مایع با استفاده از دستگاه تولید شد. ابتدا این یخ به شکل مخلوطی از آب و قطعات یخ با قطر یک تا چند سانتیمتر بود که عمدتا برای سرمایش معادن ذغال سنگ، نقره و طلا بکار می رفت. بعدا تولید یخ مایع به شکل مطلوب امکان استفاده از آن را در سرمایش سیستم های کوچک، مانند ویترین های عرضه ی مواد غذایی در فروشگاه های زنجیره ای فراهم نمود.
ارائه ی تعریف از یخ های مایع مشکل است. اما این یخ ها می توانند با تعاریف زیر دسته بندی شوند:

تعریف اول: یخ مایع عبارت است از ذرات جامد یخ در مایع که یک سوسپانسیون دو فاز را تشکیل می دهند.

تعریف دوم: یک یخ مایع مطلوب عبارت است از ماده ای شامل ذرات یخ با قطری برابر و یا کوچک تر از یک میلیمتر

تعریف دوم قراردادی اما بسیار مفید است. این نوشتار به یخ های مایعی می پردازد که به وسیله ی دستگاه های یخسازی که با استفاده از یک تیغه و به صورت مکانیکی یخ را از جداره ی دستگاه می تراشند، می پردازد.

کاربرد در سیستم های برودتی و فواید زیست محیطی:
تجربه نشان داده است که سیستم های تبرید مرسوم، که با تبخیر ماده ی مبرد سرما تولید می کنند، معمولا کم هزینه و از نظر فنی قابل اطمینان هستند. این سیستم ها از همان ماده ی سرمازایی که برای تولید برودت بکار می گیرند، برای انتقال سرما به محلی که باید سرد شود (مثلا ویترین های فروشگاه های زنجیره ای) استفاده می کنند. در نتیجه اینها محتوی مقادیر زیادی ماده ی مبرد هستند و در صورت بروز نشتی، مخاطرات جدی برای محیط زیست ایجاد می کنند. علاوه بر این، شارژ سیستم با مبردهای جایگزین CFC ها و HCFC ها، که چندین برابر گران تر هستند، بسیار پر هزینه است.
در سیستم های موسوم به غیر مستقیم، تولید و انتقال سرما از هم جدا شده اند. انتقال حرارت و یا به عبارت دیگر انتقال برودت از چرخه ی تولید سرما به مدار انتقال سرما، در یک مبدل حرارتی صورت می پذیرد. سیستم های غیر مستقیم، به دلیل اینکه ماده ی مبرد اصلی وارد محل های نگهداری مواد غذایی نمی شود و در صورت نشت مبرد خطری متوجه این مواد نمی گردد، امکان بکارگیری مبردهایی همچون آمونیاک (R-717) و یا پروپان (R-290) را نیز تسهیل مینمایند. در سیستم های غیر مستقیم مواد سرمازای زیادی به عنوان مبرد ثانویه مورد استفاده قرار می گیرند. یخ مایع، به دلیل امکان ذخیره ی انرژی زیاد در حین تغییر فاز، گزینه ی مناسبی برای استفاده به عنوان مبرد ثانویه است. چرا که برای یک ظرفیت معین، مقدار یخ مورد نیاز در مقایسه با سایر موادی که می توانند برای این منظور مورد استفاده واقع شوند، بسیار کمتر است.
با توجه به توقف تدریجی استفاده از CFC ها و HCFC ها در سیستم های برودتی، انتظار می رود استفاده از فناوری یخ مایع گسترش یابد.

روش های تولید:
در حال حاضر، برای تولید یخ، سیستم های مکانیکی بکار گرفته می شوند. معمولا مبرد در یک اواپراتور استوانه ی شکل دو جداره تبخیر می گردد. کریستال های یخ، از مخلوط آب و مواد افزودنی، بر روی جداره ی استوانه ی داخلی تشکیل و سپس به صورت مکانیکی از روی سطح آن تراشیده می شوند. با ریختن ذرات یخ به درون مایع موجود در محفظه ی داخلی، به تدریج تعداد این ذرات و در نتیجه تراکم آن در واحد حجم افزایش می یابد. دستگاه های تولید یخ مایع با وسایلی به اشکال مختلف همچون تیغه، استوانه و یا برس های گردان، همچنین تیغه های حلزونی شکل، که یخ را از جداره ها جدا می کنند به بازار عرضه شده اند. انواع دیگر، با مکانیزم های متفاوت برای تراشیدن یخ در دست مطالعه و تحقیق هستند.


مزایای فناوری یخ مایع:
مزایای بالقوه ی سیستم هایی که یخ مایع در آنها به عنوان مبرد ثانویه و یا واسط بکار گرفته می شود، در مقایسه با سیستم های تبخیر مستقیم و یا سیستم های غیر مستقیمی که از آب نمک به عنوان مبرد ثانویه استفاده می کنند، به این شرح میباشد:


ظرفیت برودتی زیاد ، ناشی از گرمای نهان ذوب
قطر کمتر سیستم لوله کشی (الف)
انرژی کمتر مورد نیاز برای پمپ ها (ب)
مواردی از قبیل پایداری بهتر دما و کنترل آسان تر رطوبت، انجماد و یا انجماد زدایی، که عملا ثابت می کند سرمای ایجاد شده به وسیله ی یخ مایع بهتر است.
در صورت اضافه کردن مخزن برای ذخیره سازی یخ، ظرفیت برودتی بالای سیستم، ممکن است باعث جلوگیری از خاموش شدن های کوتاه مدت دستگاه شود.
بکار گیری انرژی ارزان تر و فشار پائین تر تقطیر مبرد در شب که می تواند مزیت های ذیل را به همراه داشته باشد:
ü افزایش اطمینان از موجود بودن برودت، با ذخیره سازی یخ در مخازن نگهداری
ü کم کردن میزان مبرد در سیکل تبرید اصلی
ü در صورت نیاز به افزایش ظرفیت یک واحد موجود، با اضافه کردن ساعات کار و تولید به صورت شبانه روزی، نیازی به بالا بردن قدرت الکتریکی سیستم نیست.
ü بالاترین حد ظرفیت سرما سازی سیستم یخ مایع، اغلب از سایر سیستم های متداول بیشتر است.

مهندس طراح سیستم ممکن است بین گزینه های (الف) و (ب) یکی را انتخاب کند و یا از بخشی از مزیت های هر دو گزینه بهره ببرد. به دلیل پخش شدن کامل ذرات یخ در قسمت مایع، وجود مقادیر زیاد برای نرخ انتقال حرارت در سیستم هایی که از این مبرد واسط استفاده می کنند امکان پذیر است.


معایب و محدودیت ها:
سیستم های یخ مایع دارای معایب مهمی نیز هستند که به شرح ذیل بیان شده است:

نیاز به وجود مبدل حرارتی اضافی برای تبادل حرارت بین مبرد اصلی و مبرد ثانویه
پمپ اضافی
مصرف انرژی بیشتر برای به حرکت در آوردن پمپ به منظور پر کردن مخزن ذخیره یخ و نیز برای چرخاندن همزن
سیستم های اضافه تر برای کنترل و پایش کیفیت یخ مایع
آب و یخ برای مواردی که دماهای نزدیک به نقطه ی انجماد آب لازم است، بیشترین مزایا را دارد.

موارد اخیرالذکر باعث گردیده است که استفاده از سایر مخلوط ها، برای مثال پارافین، افزایش یابد. نقطه ی ذوب این مواد، با توجه به دمای مورد نیاز برای کاربردهای خاص، می تواند بطور مداوم تنظیم شود.

نتیجه گیری:
بدون شک یخ مایع یک فناوری با آینده ای روشن است که به دلیل مزیت های فراوان اقتصادی و زیست محیطی باید مورد حمایت قرار گیرد.لازم است فعالیت و تحقیقات بیشتری بخصوص در مورد چگونگی تولید یخ مایع بصورت موثر، قابل اطمینان و اقتصادی، همچنین در مورد خصوصیات و شیوه های اندازه گیری سیال به منظور سرعت بخشیدن به گسترش استفاده از این فناوری برای کاربردهای مختلف از جمله در صنعت ماهیگیری انجام پذیرد.

شنبه 22/3/1389 - 14:54 - 0 تشکر 205129

بسم الله الرحمن الرحیم

سلام علیكم


چرخه ازون


در استراتوسفر ( Stratospher ) مولکول های تازه اوزن مدام با واکنشهای شیمیایی و دریافت انرژی لازم از پرتوهای خورشید ، به مولکول و اتم اکسیژن تجزیه می شوند. این اتمهای اکسیژن که بسیار فعالند، طی مدت زمان کوتاهی کمتر از کسر ثانیه ، از هم جدا و به مولکولهای اکسیژن متصل می شوند و تشکیل مولکولهای سه اتمی اکسیژن ، یعنی ازون ، می‌دهند. غیر از این چرخه طبیعی ، طی واکنشهایی با ازت و هیدروژن و کلر تولید شده در سطح و رها شده به اتمسفر ، از بین می‌رود.
ساختمان و فرمول گسترده ازون
فرمول ازون به صورت رزونانسی نمایش داده می شود.
اهمیت ازون در حیات بشر
اگر فضانوردی ، در ارتفاع زیاد ، به این سیاره خانه ما نظاره کند، نوار نازک آبی رنگی که دور زمین را فراگرفته ، نظرش را جلب خواهد کرد. این پوشش شفاف ، حیات را در جو زمین تأمین می‌نماید. حیات ، بصورتی که ما می‌شناسیم، تنها با پوشش حفاظتی ازون میسر می‌شود. بدون وجود اوزن ادامه ی زندگی امکان ناپذیر است. تشعشعات خورشیدی ، یکنواخت نیست. این تشعشعات ، شامل اشعه‌ای به نام اشعه ماورای بنفش است.

چنانچه تمامی این تشعشعات به سطح زمین می رسید، وجود حیات در روی زمین امکان ناپذیر است. زیرا این تشعشعات حامل مقدار زیادی انرژی مرگ‌زا برای موجودات زنده است. خوشبختانه تنها بخش ناچیزی از اشعه ماورای بنفش خورشید به سطح زمین می‌رسد. قسمت اعظم این اشعه ، انرژی خود را در ارتفاع 20 تا 30 کیلومتری سطح زمین و در جو آن از دست می‌دهد. در این عمق از جو فراگیرنده زمین، مقادیر متنابهی ازون موجود است و این ازون، اشعه ماورای بنفش را جذب می کند.
رایحه تازگی بعد از رعد و برق
پس از رعد و برق ، تنفس شما با آسودگی بیشتری صورت می‌گیرد. هوا پاکیزه و مملو از تازگی است. علت این است که رعد و برق ، باعث تولید گاز اوزن در جو می شود و همین گاز است که هوا را تازه‌تر می‌نماید.
انسان و نابودی لایه اوزن
فعالیت انسانها بر روی زمین در سپر حفاظتی اوزن ، اثر می‌گذارد. از نیمه قرن بیستم ، فعالیت انسان روی زمین موجب بروز ضایعاتی در لایه اوزن شده و به نظر می‌رسد که حیات روی کره زمین در معرض مخاطره قرار گرفته است. در واقع انسان ناخواسته هوا را با مواد شیمیایی آلوده می‌کند و سپر حفاظتی خود را از بین می‌برد. در اواسط دهه 1970 ، دانشمندان به امکان تاثیر پرواز هواپیماهای سریع السعیر و یا فوق سرعت صوت و مواد شیمیایی موجود در قوطی‌های عطر پاش روی لایه اوزن پی بردند.

هواپیماهای مافوق صوت ، در ارتفاعات بسیار زیاد که هوا رقیق‌تر و مقاومت آن در برابر بدنه هواپیما کمتر است ، پرواز می‌کنند و ازت فعال موجود در دود خروجی از موتور هواپیما اثر ضایع کننده بر روی لایه اوزن دارد. گازهای کلرو فلوئورو کربن (CFC) نیز که در خنک کننده ها و دستگاههای تهویه مورد استفاده قرار می‌گیرد، روی اوزن استراتوسفری خطرناک می‌باشد. هر اتم کلر آزاد شده از این گازها ، حدود یک صد هزار مولکول اوزن را ضایع می‌کند و با مصرف این گازها طی یک دهه مقادیر زیادی ازون از بین رفته و تراکم این گاز در استراتوسفر کاهش یافته است.
نقش ازون در ضد عفونی آب
آبی که می‌آشامیم، کلریزه است. این آب مضر است، در حالی که طعم آن نیز نامطبوع‌تر از طعم آب چشمه است. آب آلوده به ازون ، عاری از هر گونه باکتری زیان‌آور است و طعم آن نیز بر ذایقه ، خوشایندتر است.
مضرات گاز ازون
ازون از واکنش با مواد شیمیایی آلوده کننده‌ای که در سطح زمین ، تولید و متصاعد شده‌اند، دوباره وارد تروپسفر (Tropospher) می‌شود و به سطح زمین می‌رسد. در این حالت ، ازون نقش مخرب و آلوده کننده دارد. چون همراه با مواد شیمیایی دیگر بافتهای حیاتی ، حیوانی و گیاهی را به شدت ضایع می‌کند. ازون ، در ارتفاع کم از سطح زمین ، همراه دود و بخار موجود در هوا در بسیاری از شهرهای بزرگ و صنعتی جهان ، موجب تشدید آلودگی می‌گردد. ازون در نقاط پایین اتمسفر یعنی تروپسفر ، مانند گازهای گلخانه‌ای عمل می‌کند و افزایش تراکم آن در این ناحیه در بالا بردن حرارت عمومی کره زمین موثر است (گرم شدن زمین.

برو به انجمن
انجمن فعال در هفته گذشته
مدیر فعال در هفته گذشته
آخرین مطالب
  • آلبوم تصاویر بازدید از کلیسای جلفای...
    آلبوم تصاویر بازدید اعضای انجمن نصف جهان از کلیسای جلفای اصفهان.
  • بازدید از زیباترین کلیسای جلفای اصفهان
    جمعی از کاربران انجمن نصف جهان، در روز 27 مردادماه با همکاری دفتر تبیان اصفهان، بازدیدی را از کلیسای وانک، به عمل آورده‌اند. این کلیسا، یکی از کلیساهای تاریخی اصفهان به شمار می‌رود.
  • اعضای انجمن در خانه شهید بهشتی
    خانه پدری آیت الله دکتر بهشتی در اصفهان، امروزه به نام موزه و خانه فرهنگ شهید نام‌گذاری شده است. اعضای انجمن نصف جهان، در بازدید دیگر خود، قدم به خانه شهید بهشتی گذاشته‌اند.
  • اطلاعیه برندگان جشنواره انجمن‌ها
    پس از دو ماه رقابت فشرده بین کاربران فعال انجمن‌ها، جشنواره تابستان 92 با برگزاری 5 مسابقه متنوع در تاریخ 15 مهرماه به پایان رسید و هم‌اینک، زمان اعلام برندگان نهایی این مسابقات فرارسیده است.
  • نصف جهانی‌ها در مقبره علامه مجلسی
    اعضای انجمن نصف جهان، در یك گردهمایی دیگر، از آرامگاه علامه مجلسی و میدان احیا شده‌ی امام علی (ع) اصفهان، بازدیدی را به عمل آوردند.